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Numerous experimental studies suggest that noise is inherent in the human brain.

However, the functional importance of noise remains unknown. n particular, from a

computational perspective, such stochasticity is potentially harmful to brain function.

In machine learning, a large number of saddle points are surrounded by high error

plateaus and give the illusion of the existence of local minimum. As a result, being

trapped in the saddle points can dramatically impair learning and adding noise will attack

such saddle point problems in high-dimensional optimization, especially under the strict

saddle condition. Motivated by these arguments, we propose one biologically plausible

noise structure and demonstrate that noise can efficiently improve the optimization

performance of spiking neural networks based on stochastic gradient descent. The strict

saddle condition for synaptic plasticity is deduced, and under such conditions, noise

can help optimization escape from saddle points on high dimensional domains. The

theoretical results explain the stochasticity of synapses and guide us on how to make use

of noise. In addition, we provide biological interpretations of proposed noise structures

from two points: one based on the free energy principle in neuroscience and another

based on observations of in vivo experiments. Our simulation results manifest that in

the learning and test phase, the accuracy of synaptic sampling with noise is almost 20%

higher than that without noise for synthesis dataset, and the gain in accuracy with/without

noise is at least 10% for the MNIST and CIFAR-10 dataset. Our study provides a new

learning framework for the brain and sheds new light on deep noisy spiking neural

networks.

Keywords: noise, strict saddle, synaptic sampling, synaptic plasticity, free energy

1. INTRODUCTION

It has been observed that noise permeates everywhere in the nervous system and affects all aspects
of brain function (Mori and Kai, 2002; Fellous et al., 2004; Faisal et al., 2008). On the other hand,
it has been proposed that action, perception, and learning in the brain such as attention, memory,
neural coding, and evolution, can be understood as an optimization process (Friston, 2010). Both
noise and optimization are prevalent in the nervous system. So, is there a close relationship between
the two?What precisely is the nature of noise that helps the brain compute optimally? In this paper,
we argue that typically the answer is YES.
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In recent years, many studies have provided insight into
which noise structures are present, and how noise affects the
structure and function of the nervous system. As far as we
know, there are mainly three noise models in stochastic neural
circuit computations. The first model is based on the leaky
integrate-and-fire (LIF) model. Although LIF models have been
extensively applied in biological spiking neural networks, they are
still deterministic. Some researchers add a Brownian noise on the
potential of IF neurons for better agreement with experimental
observations (Soula et al., 2004; Burkitt, 2006; Cessac, 2010,
2011). Brownian noise helps them characterize generic behaviors
by exploring a large number of parameters. However, these
researchers did not further study other benefits of noise. The
second model is based on the mean-filed theory. The mean filed
of one neuron represents its effect on the whole neural network.
They add noise in the neuron’s behavior by assuming a neuron
has an instantaneous firing probability in any time step (Galves
and Löcherbach, 2013, 2016; Larremore et al., 2014; Duarte et al.,
2015). This firing probability PF(V) is a function of membrane
potential V . The mean field depends on the synaptic weights
and firing probabilities PF(V) from interconnected neurons.
Therefore, they simplify the analysis and simulation of noisy
spiking neural networks in the mean-field calculation. However,
this model groups all sources of noise into a single firing function
and is therefore agnostic about the origin of noise. As a result,
it is difficult to decompose explicit noise terms from the model,
which is a bad thing for the mathematical analysis of noise.
The third model is based on sampling. General results from
statistical learning theory suggest that both brain computations
and brain plasticity should be understood as probabilistic
inference (Knill and Pouget, 2004; Pouget et al., 2013). These
results have provided insight into how noise plays an essential
role in the networks of spiking neurons. Based on Boltzmann
machines, Maass (2014) propose that knowledge can be stored
in probabilistic distributions of network states, and noise enables
networks of spiking neurons to carry out probabilistic inference
through MCMC sampling. The sample of this model is the
state of neurons and the noise results from the ion channels of
excitable membranes. Based on Langevin sampling, Kappel et al.
(2015, 2018) analyzed continuously ongoing synapse dynamics
and noise endows networks to compensate for internal and
external changes automatically in the local plasticitymechanisms.
The sample of this model is the state of synapses, and the noise
results from the synaptic transmission. In the work by Kappel
et al. (2018) in particular, they discuss the impact of different
temperatures on learning performance, where the strength of
stochasticity can be scaled by the temperature. Results show that
good performance was achieved for a range of temperature values
and temperatures that were too low (such as without noise) or
too high impaired learning. They provide a short explanation
through the perspective of an analogy of simulated annealing.
However, they did not provide a rigorous theoretical analysis
for the noise mechanism. In conclusion, although researchers
using the sampling model have claimed that the benefit of
noise is a functional part of sampling, to perform probabilistic
inference, they do not provide a detailed mathematical analysis
of noise and do not study which noise structure is involved,

or how it enhances the computation power of spiking
neural networks.

In summary, in theoretical neuroscience research, the extent
to which noise is biologically present and how noise improves
computation performance in the brain has rarely been addressed.
Based on the synaptic sampling model (Kappel et al., 2015),
we give a detailed mathematical analysis of noise in spiking
neural networks and try to explain why our brain benefits
from noise. Here, we can generally assume that noise type is
fluctuations in synaptic transmission because the proposed noise
has an important role in synaptic plasticity. There are many
sources of noise in synaptic transmission, such as stochastic
molecular diffusion (Holcman et al., 2005), short-term plasticity
(Abbott and Regehr, 2004), and synaptic neurotransmitter release
(Branco and Staras, 2009). Therefore, we make no assumptions
about the concrete sources of noise. Next, we will sketch the noise
mechanism and try to bridge the gap between neuromorphic
computing and machine learning.

According to the free-energy principle in neuroscience, we
propose a biologically plausible noise structure and prove that
such noise helps optimization escape from bad saddle points in
the brain computation and brain plasticity. First, we propose that
one of the essential roles of noise is to improve optimization
and prove that the noise mechanisms of improving optimization
satisfy the strict-saddle condition of spiking neural networks.
The main bottleneck in optimization is that gradient updates
are trapped in exponentially more saddle points instead of local
minima (Fyodorov and Williams, 2007; Dauphin et al., 2014).
Under the so-called strict saddle property, gradient descent
with noise will escape from bad saddle points and lead to
efficient optimization (Ge et al., 2015). The importance of adding
perturbations for efficient non-convex optimization has been
justified in many machine applications, including deep learning
(Du et al., 2017; Jin et al., 2017). We prove that such noises
make spiking neural networks satisfy strict saddle properties
by changing the curvature of the landscape in the network
parameter space, especially in the area near the saddle points.
In other words, noise helps spiking neural networks build
appropriate Hessian constructions, and optimization can utilize
enriched curvature information of the node in the direction
without ever calculating or storing the Hessian itself. Second,
the proposed noise in the brain theoretically minimizes the free
energy of noise signals. In neuroscience, any self-organizing
system at equilibrium must minimize its free-energy to resist
disorder (Friston, 2010; Joffily and Coricelli, 2013; Apps and
Tsakiris, 2014; Colombo andWright, 2018). Since free energy can
be expressed by long-term average self-information of sensory
signals, such as mean square error, we prove that such a
particular form of noise comes from minimum mean square
error estimation. Third, such noise satisfies the fundamental
biological characteristic. It is popular to use Brownian motion
to describe continuous random fluctuations in spiking activities
(Tuckwell, 1988; Cateau and Fukai, 2003; Câteau and Reyes,
2006; Nobuaki et al., 2009). Compared with traditional Brownian
motion, the difference is that the standard deviation of our noise
has a positive correlation with dendritic spine size. Moreover,
it has been observed that larger spines show the most diverse
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FIGURE 1 | The non-strict saddle point (A) and the strict saddle point (B).

changes in CA1 pyramidal neurons (Nobuaki et al., 2009). Our
noise has a greater standard deviation for larger spines and is
hence biologically plausible. Finally, our noisy spiking neural
network can also be extended to multi-layer neural networks
and obtains better performance. It is generally believed that deep
neural networks can learn more complex representations and
has shown remarkable success in diverse fields (LeCun et al.,
2015). As an example, we realize three-layer noisy spiking neural
networks based on gradient back-propagation, which provides a
possibility for the realization of large-scale deep networks.

This paper is organized as follows. In section 2, we introduce
some complex concepts, such as synaptic sampling and the
saddle point problem in non-convex optimization. In section
3, we demonstrate how noise helps optimization escape from
saddle points in the neural dynamics and give a proof of
sketch on the “strict saddle” condition for synaptic sampling.
In section 4, we will explain why the proposed noise structure
is biologically plausible from two points: origin from the free-
energy principle in neuroscience and consistency with biological
observation. In section 5, we derive the learning rule for
multi-layer spiking neural networks based on gradient back-
propagation for better learning abilities. In section 6, numerical
simulations are presented and analyzed. In section 7, we highlight
the main contributions of this work and discuss some related
open problems. Detailed theorem derivations are deferred to
in Appendices 1, 2, 3 (Supplementary Presentation 1).

2. PRELIMINARIES

2.1. Spiking Neural Networks and Hebb
Rule
Spiking neural networks (SNNs) is one of the brain-inspired
computing models. Its spike-based coding tends to represent
more complex information due to spatio-temporal dynamics. In
addition, its computation occurs only when the unit in networks
receives a spike signal. Such event-driven property is consistent
with emerging neuromorphic hardware. Therefore, SNNs have
great potential for energy-efficient processing on neuromorphic
hardware (Deneve, 2008; Merolla et al., 2014).

In experimental neuroscience, changes of synaptic strength
are called synaptic plasticity. The Hebb rule describes how
the strength between pre- and postsynaptic neurons should be

modified in synaptic plasticity. It is informally summarized as
“Cells that fire together, wire together.” Spike-timing-dependent
plasticity (STDP) is one of the Hebbian learning methods.
The strength and direction of learning depends on the timing
difference between pre- and postsynaptic spikes (Bi and Poo,
1998; Gerstner and Kistler, 2002; Sjöström et al., 2002).

2.2. Synaptic Sampling
Network plasticity by maximum likelihood has been studied
in many ways. The inputs x impinge on the network from
its environment. By maximizing the likelihood of the inputs,
the network parameters θ are adjusted to encode the input
information. That is to say, maximizing the likelihood, is to fit
the resulting internal model to the inputs as best as possible.
However, the model tends to produce overfitting, thereby
reducing generalization capabilities. Furthermore, without any
prior distribution, it responds slowly to perturbations. The
solution to such a challenge is how the posterior distribution
of weights can be represented and learned in neural dynamics.
Based on stochastic differential equations, Kappel et al. (2015)
solve this challenge by sampling from posterior distribution
pN(θ |x). This model defined by Equation (1) is referred to as
synaptic sampling. Furthermore, they only understand noise as a
functional aspect of learning because it helps the network sample
from posterior distributions. However, when this model is used
for classification with a standard Gaussian noise, it is difficult
to find a reasonable minimum due to the saddle point problem,
which will be introduced next.

dθki = b

(
∂ log pS(θ)

∂θki
+

∂ log pN(x|θ)

∂θki

)
dt + bdWki (1)

2.3. Saddle Point Problem
Critical points (i.e., minima, maxima, saddle points) are often
surrounded by error plateaus of small curvatures, and hence are
attractive for the gradient-based learning process. However, as
gradient-based algorithms only depend on gradient information,
they often mistake saddle points for local minima or maxima.
Moreover, it is generally believed that a high-dimensional
error functions are likely to have saddle points rather than
local minima because the number of saddle points dominate
over local minimum exponentially with increasing dimensions
(Fyodorov and Williams, 2007; Dauphin et al., 2014). Therefore,
gradient-based algorithms are particularly sensitive to saddle
point problems.

Recently, Ge et al. (2015) identified a “strict saddle” condition,
which guarantees that stochastic gradient descent can escape
from the saddle points quickly (see Theorem 6 in work Ge
et al., 2015). Note that a twice differentiable function f (θ) is a
strict saddle, if all its local maxima have ∇2f (θ) < 0 and all
its other stationary points satisfy λmax(∇2f (θ)) > 0. Note that
λmax defines the maximum eigenvalue. In fact, the “strict saddle”
condition guarantees that there will be at least one descent
direction in the small neighborhood of saddle points, not a plain
area. For example, Figure 1A shows one non-strict saddle point.
The area around it is plain and it would be very tough for
optimization to escape from such a bottleneck even with noise.
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FIGURE 2 | Architecture of the networks whose dynamics are modeled by Equation (3).

TABLE 1 | Definitions of the main mathematical symbols used in this paper.

xn Vector of the nth input variables
{
xn1, ..., x

n
I

}

yn Vector of the nth hidden variables
{
yn1 , ..., y

n
J

}

zn Vector of the nth output variables
{
zn1, ..., z

n
K

}

hn Vector of the label
{
hn1, ..., h

n
K

}

w Vector of all synaptic weights wki = e(θki−θ0 ) from input neuron i to

network neuron k

θ Vector of all synaptic parameters {θki , k ≤ K, i ≤ I}
pS (θ) Structural constraints following N (µ, σ 2)

pN (J|θ ) Likelihood function with the form of cross-entropy

logpN (J|θ ) =
∑N

n=1

∑K
k=1 2{hnk } logp

(
znk |x

n, θ
)

pN (xn|θ) Poissonian distributions of spikes parameterized by αewki

dWki Stochastic time course of the parameter θki

2
(
hnk
)

Heaviside step function

Sk (t) The spike train of the neuron zk

Figure 1B shows one strict saddle point. There are at least one
descent direction and it will take little time to escape with noise.
Based on the above theory, we propose a sufficient condition that
noise should satisfy and argue that noise plays a critical role in
the brain optimization process.

3. “STRICT SADDLE” CONDITION FOR
SYNAPTIC SAMPLING

In this section, we will take synaptic sampling neural networks as
an example and demonstrate how noise improves optimization
in neural dynamics. We study the effect of noise on the synaptic
sampling defined in Equation (1) for classification. As Figure 2
shows, in the spike-based Winner-Take-All (WTA) circuit, input

neurons tune nth stimulus to 200-ms long spiking activities xn

according to tuning curves. Given the nth stimulus, the input
xi(t) is expressed by the summation of excitatory postsynaptic
potentials (EPSPs) on neurons i in Equation (2).

xi (t) = 6f ǫ(t − t
(f )
i ) (2)

where t
(f )
i denotes the spike times of input neuron i and ǫ

is the response kernel for spike input, i.e., the shape of the
EPSP (Kappel et al., 2015). The corresponding instantaneous
firing rate ρk(t) of neurons k depend exponentially on the
membrane potential uk(t). In this case, neural networks output
a 200-ms spiking pattern z

n and the neuron which spikes most
indicates the possible label. Synaptic sampling is then applied
to KxI synapses. The learning goal in Equation (1) becomes the
posterior distribution p∗(θ |J)defined by pS(θ) ∗ pN(J|θ). pN(J|θ)
measures the degree of network fitting to the classification. The
detailed definition is shown in Table 1. The synaptic sampling
rule (Equation 1) yields for this model.

dθki = b

(
1

σ 2
(µ − θki) +

N∑

n=1

wki

(
xni − αewki

) (
2
{
hnk
}

−Sk (t)
))

dt + bdWki (3)

In Equation (3), the component
(
xni − αewki

) (
2
{
hn
k

}
− Sk (t)

)

of likelihood differential term is a simplified version of STDP
(spike timing-dependent plasticity) (Habenschuss et al., 2013;
Nessler et al., 2013). Biological studies on STDP show that
the timing difference between pre- and post-synaptic spikes
decide the strength and direction of learning (Bi and Poo, 1998;
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Sjöström et al., 2002). When a presynaptic spike comes before
a postsynaptic spike, xi is large and the term

(
xni − αewki

)
is

positive at the time of the postsynaptic spike. Therefore, the
term

(
xni − αewki

)
leads to potentiation. When a presynaptic

spike comes after a postsynaptic spike, wki is large and the
term

(
xni − αewki

)
is negative at the time of the postsynaptic

spike. Therefore, the term
(
xni − αewki

)
leads to depression. In

addition, the intensity of potentiation is inversely correlated
with synaptic weights. It is consistent with experimental STDP
studies (Habenschuss et al., 2013; Nessler et al., 2013).

We show that when the noise takes a certain form, synaptic
sampling networks for classification satisfy the “strict saddle”
condition and leads to efficient optimization. Note that if the
noise is just standard normal distribution, which is a popular
choice for stochastic differential equations, networks will not
satisfy such property.

Theorem 1 (sufficient condition). Given the nth input sample
Xn, output Sn = g(Xn,W) is a firing rate vector in the synaptic
sampling networks and W represents adjustable parameters with
internal noise dW . In the classification setting, the output Sn

can be interpreted as the scores or probabilities of each class,
or as the recognized class label of input sample Xn. A loss
function φ(Hn, g(Xn,W)) measures the discrepancy between the
desired output for input Xn, and the output Sn = g(Xn,W)
computed by the networks. One objective function f (W) =
E(φ(H, g(X,W))) is average loss function φ(Hn, g(Xn,W)) over
a set of labeled examples {(X1,H1), . . . (XN ,HN)}. The supervised
learning problem is to find the local minimum W of objective
function f (W). if the internal noise dW satisfies Equation (4),
function f is strict saddle.

dW= N (0,Nαew)dt (4)

Proof sketch of Theorem. There are mainly two difficulties in
the proof of Theorem 1: how to transfer noise distribution to
the computable function and how to prove λmax

(
∇2f (θ)

)
>

0 according to the definition of strict saddle condition
in section 2. For the first difficulty, due to the Gauss

property p {|x− µ| < σ } = 0.6826 and
wkie

wki√
ewki

|
wki→0

=
0, ±Nαwkie

wki represents the general characteristic of noise
distribution appropriately. Therefore, it is plausible to refer to
(
∑

n αwkie
wki
(
Sk (t) − 2{hn

k
}
)
)dt as the noise distribution dWki

in the computation. For the second difficulty, according to the
definition of strict saddle condition in section 2, the sufficient
condition of strict saddle property is λmax

(
∇2f (θ)

)
> 0.

However, it is difficult to compute λmax directly. In fact, it is
convenient to compute a stronger condition, i.e.,

∑
λ(∇2f (θ)) >

0. According to the equation about trace of n × n matrix A:
tr(A) = λ1 + . . . + λn, we just concentrate on the diagonal
elements of the Hessian matrix. For computational convenience,
we convert the derivative of θ to w according to the chain rule.
We get that ∇f (θ) = 0 ⇔ ∇f (w) = 0 and

∑
k

∑
i ∇f (θki) ≥

0 ⇔
∑

k

∑
i(∇f (wki))w

2
ki
≥ 0. According to the equation about

trace of matrix M: tr(M) =
∑

λ, we get,

∑
λ
(
∇2f (θ)

)
=
∑

k

∑

i

∇2f (θki) (5)

= −
KI

σ 2
+
∑

k

∑

i

1

σ 2
(θki − µ)

+
∑

n

∑

k

∑

i

wkiαe
wki (Sk(t)− 2{hnk})

It is obvious that
∑

λ
(
∇2f (θ)

)
consists of three terms: A =

− KI
σ 2 , B =

∑
k

∑
i

1
σ 2 (θki − µ), C =

∑
n

∑
k

∑
i wkiαe

wki (Sk(t)−
2{hn

k
}). We need to prove the following equality.

∑
λ
(
∇2f (θ)

)
= A+ B+ C > 0 (6)

The proof is divided into three steps. Note that the first sentence
of each step below is the conclusion we want to prove.

1) B ≪ C. Only when the noise dWi= N (0,Nαewki )dt, we can
derive that B +

(
xni − αewki

)
C is a variant of the gradient.

According to the zero gradient and STDP learning rule, B
C ≈

0, thereby B can be ignored.
2) C is positive. C ≈ N(

∑
i wkixi −

∑
i wlabel,ixi) which

represents the approximate potential difference of actual and
expected neurons. When networks are trapped in saddle
points, the neuron that releases spikes is not the one expected.
Thus, the potential of actual neurons is higher than expected.

3) A + B + C > 0. A is a negative constant. When N is greater
than a certain value, C is large enough so that A+ B+ C > 0
and the strict saddle property will be satisfied.

The theorem is therefore proven. That is to say, Theorem
1 guarantees noisy synaptic sampling networks satisfy the
strict saddle condition, and hence noise will help escape
from saddle points in Theorem 6 of the work (Ge et al.,
2015). The detailed derivation appears in Appendix 1

(Supplementary Presentation 1) . It is worth noting that
we found that the important step C represents the positive
potential difference of actual and expected neurons, and thus
the strict saddle condition can be satisfied as long as C is large
enough. The realization of such an important step comes from
introducing parameters ±Nαwkie

wki by proposed noise. In other
words, noise helps spiking neural networks build appropriate
Hessian construction, and optimization can utilize enriched
curvature information of the node in the direction without ever
calculating or storing the Hessian itself.

4. BIOLOGICALLY INTERPRETATION FOR
PROPOSED NOISE

4.1. Origin From the Free-Energy Principle
in Neuroscience
The proposed noise structure is inspired by the free-energy
principle. It is generally believed in neuroscience that any
adaptive system at equilibrium with its environment must
minimize its free energy (Friston, 2010; Joffily and Coricelli,
2013; Apps and Tsakiris, 2014; Colombo andWright, 2018). Free
energy can be expressed as self-information plus a Kullback–
Leibler divergence term in Equation (7), where s̃ is a sensation
signal (Friston, 2010).

F = D(q(ϑ |µ)|
∣∣p (ϑ |̃s)

)
− lnp(̃s|m) (7)
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Given the noise signals ε̃, the Kullback–Leibler divergence is
the perceptual difference between the recognition density q(ϑ |µ)
encoded by internal states µ and the posterior density p (ϑ |̃ε)
of the causes ϑ . Self-information measures the error between
the true and expected sensation. It is formally the negative log-
probability of a noise outcome ε̃ given the generative model m,
that is, −lnp(̃ε|m). Equivalently, it is also expressed as the long-
term average of the square error between the true and expected
sensation. The divergence is always non-negative, and free energy
is tightly bounded by surprise.

A number of cognition and perception studies show that
brain system implicitly infers the cause (network parameters
ϑ) in a Bayesian fashion (Ernst and Banks, 2002; Yuille and
Kersten, 2006; Beck et al., 2008), the recognition density q(ϑ |µ)
approximates the posterior density p (ϑ |̃ε). That is to say,
Kullback–Leibler divergence approximates zero and free energy
becomes surprise. Therefore, minimizing the free energy is also
a process to minimize the error E (ε − ε̃)2 between the true and
expected noise outcome ε̃. Thereby, we obtain the optimal noise
distribution as shown in Theorem 2.

Theorem 2 (free energy principle). Suppose that a function
g(X) : R

I → R
K is a spiked-based winner-take-all neural

network, given the output variable zn = k, the value of input
xni is from a Poisson distribution POISSON(xni |αewki ) where the
mean is determined by the synaptic weight wki from input neuron
i to network neuron k. If there is a noise distribution p (ε|θ) in
Equation (8), such a self-organizing system can minimize its free
energy of noise signals. Further, the optimal noise ε̂ is obtained by
the minimum mean square-error estimation E(ε|θ̂).

ε|θ∼ N
(
0,Nαewki

)
(8)

The important step is to obtain the probability distribution
p (ε|θ). By inducing input variables x, the unknown distribution
p (ε|θ) will become the integration of easy distributions p (ε|x)
and p (x|θ) in Equation (9). p (x|θ) is the normal distribution
where both the mean and variance are Nαewki . It has been shown
in the work by Habenschuss et al. (2013) and Kappel et al.
(2015) that in the spiked-based WTA networks, one prominent
motif of cortical microcircuits, p (x|θ) is the integration of N
Poisson distribution with themean αewki , which can approximate
normal distribution. The detailed proof appears in Appendix 2

(Supplementary Presentation 1) .

p (ε|θ) =
∫

p (ε|x) p (x|θ)dx (9)

In this section, we illustrate three points. First, the free energy
principle helps verify the plausibility of the proposed noise.
It is popular to use Brownian motion to describe continuous
random fluctuations in spiking activities. In contrast, the
standard deviation of our noise is Nαew while it is constant
in traditional Brownian noise, which is an important difference
to other similar noise models. According to free energy, only
this type of noise, i.e., N (0,Nαew) can be derived rather than
standard Brownian noise or other forms. Therefore, it is strong
evidence for the plausibility of the proposed noise theoretically.
Second, the free energy principle improves biological relevance

of our noise. In neuroscience, the free energy principle unifies
different aspects of how the brain works, such as attention,
synaptic plasticity, and neuronal coding. Satisfying the free
energy principle complements evidence of the neurobiological
existence of our proposed noise. Third, the origin of our
proposed noise should be illustrated, and why we choose such
type of noise, and not other types of Brownian noise in the strict-
saddle condition, is answered. In fact, we derived the proposed
noise initially inspired by the free energy principle. We then
found that such noise helps spiking neural networks satisfy the
strict-saddle condition.

4.2. Consistency With Biological
Observations
Many biological and biochemical stochastic processes affect the
efficacy of a synaptic connection. Some are indirectly related,
for example, NMDA receptors, PSD-95 in the mammalian
postsynaptic density (PSD), which can affect the amplitude of
postsynaptic potentials and the efficiency on clustering glutamate
receptors (Bhalla and Iyengar, 1999; Gray et al., 2006; Coba et al.,
2009; Ribrault et al., 2011). Some are directly related, such as
the volume of spines at dendrites (Engert and Bonhoeffer, 1999;
Matsuzaki et al., 2001; Zhong et al., 2005; Ho et al., 2011). It is
popular to use Brownian motion W(t) to describe such random
continuous fluctuations (Tuckwell, 1988; Cateau and Fukai, 2003;
Câteau and Reyes, 2006; Nobuaki et al., 2009). Brownian motion
W(t) is utilized in the Langevin equation as Equation (10) shown,

dV(t)

dt
= σ (V (t))

dW(t) (t)

dt
+ µ(V(t)) (10)

whereV(t) represents a stochastic process with an average change
(or drift) µ(V), and standard deviation σ (V), W(t) represents
standard Brownian motion. Nobuaki et al. (2009) applied such a
stochastic process in Equation (10) to the volume of spines V(t).
They recorded the volumes of many individual spines of CA1
pyramidal neurons in a rat hippocampus. They found “intrinsic
volume fluctuations” in the absence of synaptic activity. Figure 3
shows the corresponding quantitative analysis of fluctuations
in spine-head volume in the absence of activity-dependent
plasticity. It shows that average change µ (V) of intrinsic volume
fluctuations is zero, and the standard deviation σ (V) is roughly
proportional to the spine-head volume. It is likely because larger
spines have a greater PSD area. Therefore, it will accumulate
more AMPA-type glutamate receptors andmore synaptic vesicles
in the presynaptic terminal (Harris and Stevens, 1989; Nusser
et al., 1998; Takumi et al., 1999; Harris et al., 2003; Knott et al.,
2006). In our noise structure N (0,Nαew), σ is also greater for
larger spines. It is consistent with this important observation of
spine dynamics, and further, it may be a more plausible model to
describe intrinsic fluctuations.

5. EXTENSION TO MULTI-LAYER NOISY
SPIKING NEURAL NETWORKS

In this section, we will demonstrate one computational
application of our noise model: realization of multi-layer spiking
neural network for better representations. These characteristics
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FIGURE 3 | Quantitative analysis of noise from the proposed theory and physiological experiments in the absence of synaptic activity. (A) Standard deviation (σ ) of

proposed theoretical noise N
(
0,Nαewki

)
. When synaptic weight changes are relatively small, the standard deviation is roughly proportional to synaptic weights. (B,C)

Standard deviation (σ ) and mean (µ) of fluctuations in spine-head volume in the absence of activity-dependent plasticity in physiological experiments. Standard

deviation (σ ) is greater for larger spines. Further, (σ ) has an approximately proportional relationship with spine-head volume. The mean change (µ) is around zero,

which is consistent with that of our noise (cited in Figure 5 of the paper Nobuaki et al., 2009).

FIGURE 4 | Three-layer neural networks diagram.

will shed new light on machine learning. It is generally believed
that deep neural networks can learn representations better than
the two-layer network and are more extensively applied in
various scenarios (LeCun et al., 2015). It is therefore significant
to generalize the depth of noisy spiking neural networks. As an
example, we derive a back-propagation algorithm for synaptic
sampling on the three-layer network in Figure 4. The derivation
for deeper networks is similar.

The prior probability remains the same, which reflects the
structural constraints and rules. The likelihood function is still
the form of cross-entropy, which reflects the class recognition
probabilities. The difference is the posterior probability

p
(
zn = k

∣∣xn,w
)
becomes the product of Poisson distributions

of both the first and second layers. The likelihood function in
Table 1 becomes,

log pN (J|θ) =
N∑

n=1

K∑

k=1

2{hnk} logp
(
zn = k

∣∣xn,w
)

=
N∑

n=1

K∑

k=1

2{hnk} log

∏
i

∑
j POISSON

(
xni
∣∣αewji

)
POISSON(ynj |αe

wkj )
∑

k

∏
i

∑
j POISSON

(
xni
∣∣αewji

)
POISSON(ynj |αe

wkj )

(11)

The main difficulty is how to get the gradient in the first layer.
According to the generalized delta rule, derivative results from
the product of two parts: one part represents the change in
likelihood function relative to the change of net inputs, and one
part reflects the change of net inputs relative to a small change of
weight. Thus, we get,

∂ log pN (J|θ)

∂wji
=

∂ log pN (J|θ)

∂yj

∂yj

∂wji
(12)

where yj is net inputs for the second layer. For the second factor,
as the firing rate of stochastic spike response neurons depends
exponentially on the membrane voltage (Jolivet et al., 2006;
Mensi, 2011), we derive that,

∂yj

∂wji
≈ xi (13)

For the first factor, it can be implemented by propagating gradient
information backward through the last layer. According to the
chain rule, it can also be written as the product of two parts, as
shown in (Equation 14).

∂ log pN (J|θ)

∂yj
=
∑

k

∂ logpN (J|θ)

∂wkj

∂wkj

∂yj
(14)
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One part is the gradient of the last layer, and another part is
simply the deviation of mean function E(yj) determined by the
synaptic weight wkj from input neuron j to neuron k. In this case,
substituting Equations (13) and (14) to Equation (12), we finally
get the gradient information of the first layer.

Given the L-layer noisy spiking neural networks, each layer
computes a function Xl = gl(X

l−1,W l), where Xl is the output
of the lth layer, Xl−1is the input of the lth layer and W l is
the vector of adjustable parameters between the (l − 1)th and
the lth layer. Note the vector X1 in the first layer is the input
sample. The learning rule for L-layer spiking neural networks
can be concluded as follow. The detailed derivation appears in
Appendix 3 (Supplementary Presentation 1) .

dθLkj = b

(
1

σ 2

(
µ − θLkj

)
+

N∑

n=1

(wL
kj

(
xn,L−1
j − αe

wL
kj

) (
2{hnk}

−SLk (t)
))

dt + bdWL
kj (15)

dθ l−1
ji = βα

N∑

n=1

xn,l−1
i

(
dθ lkj + dθ lmj

)
(2 ≤ l ≤ L) (16)

where dθ l
kj
represents change in parameters corresponding to the

neuron k which releases a spike and dθ lmj represents change in

parameters corresponding to the desired neuronm.

6. SIMULATION RESULTS

We run simulations for synaptic sampling with/without
noise applied to 10-categories of classification. We
test the proposed model on three datasets from
three aspects: (1) application accuracy; (2) neuron
spike responses; (3) reduction rates for trapping in
saddle points.

6.1. Sensory Environment
6.1.1. Synthesis Dataset
We use a cluster of points in 3D space to represent one
sensory experience for visualization. The center of a cluster
is the mean of the Gaussian, which is independently
drawn from N (0.5, 0.2). The covariance matrix of the
cluster is randomly given by 0.04I + 0.01ξ , where I is
the 3-dimensional identity matrix and the element of ξ

is randomly drawn from N (0, 1). Figure 5A shows some
clusters of points in 3D space. Each cluster represents one
class. Different cluster are described by different color.
Figure 5B shows three-dimensional coordinates. For 10-
categories classification, 10 clusters will be generated
equally. We generate a sample by randomly selecting one
Gaussian cluster and then get a sample position from the
corresponding distribution.

FIGURE 5 | Illustration of sensory information tuning to network inputs. (A,B) Examples of 3D points from the Synthesis dataset. Different classes of sensory

information are represented by different clusters of 3D points, each illustrated by different colors. Three coordinate values of one 3D point are shown in (B). They will

be tuned by the input neurons. (C,D) Examples of digits from MNIST dataset. Handwritten digit is a 28 × 28 pixel image with the gray value. Seven hundred and

eighty-four pixel values of one image are shown in (D). (E,F) Examples of images from CIFAR-10 dataset. Each image is a 32 × 32 color image in the RGB format.

3,072 pixel values of one image are shown in (F). (G) Firing rates of input neurons after tuning the normalized sensory information. Firing rates are distributed almost

uniformly in spite of different sensory representations in (B,D,F). (H) Spike trains of some of the input neurons. Given each example, firing rates are kept fixed and

Poisson spike trains are drawn for the 200-ms duration of the input presentation.
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6.1.2. MNIST Dataset
It composes of 10 handwritten Arabic numbers from 0 to 9, which
has a training set of 60,000 examples, and a test set of 10,000
examples. It is a good compromise between real-world data test
and easy preprocessing and formatting. Each example is a 28 ×
28 pixel image with the gray-scale value. In preprocessing the
pixel values are normalized to interval [0, 1]. Images in Figure 5C
are drawn from MNIST dataset. Figure 5D shows the 784 pixel
values of one 28× 28 grayscale image.

6.1.3. CIFAR-10 Dataset
It consists of 60,000 color images in 10 classes, which has
a training set of 50,000 examples, and a test set of 10,000
examples. The 10 classes are completely mutually exclusive, such
as airplane, bird, and cat. Each example is a 32× 32 color image in
the RGB format. In preprocessing the pixel values are normalized
to interval [0, 1]. In Figure 5F, it consists of three similar parts
due to RGB format.

6.1.4. Network Inputs
Both the sample positions in the Synthesis dataset and real-world
images from the MNIST or CIFAR-10 dataset are represented
by the spatiotemporal spike trains. For the Synthesis dataset, the
input layer is 1,000 neurons for one 3D point while for real-world
datasets, each pixel of one image is represented by a single input
neuron. Input neurons have different Gaussian tuning curves.
According to tuning curves, they tune the sample position or
normalized pixel values to corresponding firing rates. In addition,
the 5 Hz background noise is added. Although raw sensory values
of three datasets are differently distributed in Figures 5B,D,F,
corresponding firing rates are scattered over almost the entire
probability space after tuning in Figure 5G. As a result, Poisson
spike trains of each input neuron are drawn with duration of 200
ms in Figure 5H.

6.1.5. Settings
In all simulations, we set N = 1, 000,α = e−6, and
b = 10−5 or b = 10−4. Initial synaptic parameters
are drawn from the prior distribution pS(θ). We adopt the
same configuration about the offset θ0 and actual weights ŵki

with Kappel et al. (2015)
The purpose of our paper is to propose one appropriate

computational hypothesis about whether biologically inherent
noise benefits neural systems and how it occurs precisely. To
test this hypothesis, we chose the biologically appropriate neural
model: synaptic sampling. On the one hand, the inherent noise
is described in variables in synaptic sampling and hence it
easy to capture the details of noise biophysics and dynamics.
The advantage of noise can be analyzed based on mathematical
tractability. On the other hand, synaptic sampling is a biologically
appropriate neural system since it simulates some aspects
of realistic neural systems, such as neuron topology, neuron
type (e.g., excitatory, inhibitory), and Spike Timing Dependent
Plasticity (STDP) learning rule, spatial and temporal effect of
spike signals. The goal of our paper has been achieved when
learning performance is better in the presence of noise than
in its absence in the synaptic sampling experiments. Although

it may perform better with further hand-tuning, it is beyond
the scope of this paper. As far as we know, we first realize
the supervised learning in the synaptic sampling networks.
Apart from the stochastic term, the parameter configuration in
synaptic sampling without noise is the same as that with noise.
Therefore, synaptic sampling without noise is representative of
the basic model.

6.2. Verification on the Two-Layer
Networks
Through the tuning curves of input neurons, 200 ms spike
patterns were communicated to synaptic sampling networks for
each sample. According to Equation (3) and spike-based update
scheme, the sensory experiences were presented sequentially, and
all synapses were updated sequentially. The final predicted label
is the neuron which fires most between the 10 output neurons.
We repeat the simulation 10 runs and the accuracy is averaged
over 10 runs. For the Synthesis dataset, we present 14,400 samples
to 1,000 input neurons for 2.4 h. For the MNIST dataset, we
present 60,000 samples to 784 input neurons. For the CIFAR-
10 dataset, we present 50,000 samples to 3,072 input neurons. As
shown in Figure 6, in the learning and test phase, the accuracy of
synaptic sampling is almost 20% higher than that without noise
for the Synthesis dataset. The gap of accuracy with/without noise
is around 15% for the CIFAR-10 dataset and around 10% for
the MNIST dataset. The accuracy of synaptic sampling without
noise in these datasets is, respectively around 80% (MNIST),
39% (CIFAR-10), 60% (Synthesis dataset). It shows the number
of bad saddle points in the spiking neural network is relatively
small given the MNIST dataset. Therefore, synaptic sampling
without noise also obtains satisfactory performance, and adding
noise obtains the least increase in accuracy compared to other
datasets. On the other hand, the CIFAR-10 dataset is the most
challenging among three datasets due to the larger scale and
more complex representation as shown in Figure 5. It indicates
that there will be a large number of bad saddle points making
it difficult to achieve a significantly better performance. As
a result, the accuracy is only improved from 40% (without
noise) to 55% (with noise). For the three datasets, we found
that synaptic sampling with/without noise tends to converge at
10,000th iteration. Although the speed of convergence in synaptic
sampling with/without noise is similar, synaptic sampling with
noise is faster than that without noise, especially in the CIFAR-
10 dataset. It is likely because spiking neural networks with noise
buildmore appropriate Hessian construction and utilize enriched
curvature information of the node in the direction. As shown
in Figures 6B,D,F, the standard deviation of synaptic sampling
with noise is slightly smaller in spite of additional fluctuations.
That is to say, the precision of the optimization performance
does not become worse with the effect of noise, which is different
from the general idea that noise will lose precision. In addition,
the accuracy in the test phase is similar to that in the learning
phase. It shows that noise prevents spiking neural networks from
overfitting in spite of increasing learning accuracy.

Figure 7 shows the spike trains of 10 readout neurons in
the time course of learning. The ordinate displays 10 readout
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FIGURE 6 | Performance of the two-layer networks with and without internal noise. (A) Learning curves of synaptic sampling with/without noise on the training set for

the Synthesis dataset. Mean values over 10 runs are shown, shaded area indicates STD. (B) Accuracy comparison in the learning and test phase for Synthesis

dataset (averaged over 10 runs). Error bars indicate STD. (C,D) In the MNIST dataset, the performance with internal noise maintains better than that without noise

throughout the whole learning course. (E,F) In the CIFAR-10 dataset, the performance with internal noise maintains better than that without noise throughout the

whole learning course.

neurons. The abscissa displays time. One point (t, x) represents
that at the time t, neuron x releases one spike. In Figures 7D,E, it
shows the 400-ms learning process from the 57,000th example to

the 57,020th example. The corresponding label is [6, 3, 1, 9, 5, 1, 8,
2, 4, 5, 8, 1, 9, 2, 7, 5, 1, 4, 2, 6]. In the learning process, spikes are
scattered almost equally among 10 readout neurons initially and

Frontiers in Neuroscience | www.frontiersin.org 10 April 2020 | Volume 14 | Article 343

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fang et al. Noise Improves Optimization in the Synaptic Plasticity

FIGURE 7 | Spiking activity of the 10 output neurons in the two-layer networks with/without internal noise motifs. We present 20 samples during a 4 s epoch for one

of the 10 simulations. Ten output neurons in the WTA circuits represent the binary random variables in the supervised classification learning. (A) Firing responses of the

10 output neurons before learning. (B,C) Firing responses of the output neurons after learning with/without noise for Synthesis dataset. Sparsification of firing of

output neurons occurs obviously after learning with noise. (D,E) Same for MNIST dataset. The corresponding labels of 20 samples are [6, 3, 1, 9, 5, 1, 8, 2, 4, 5, 8, 1,

9, 2, 7, 5, 1, 4, 2, 6]. The network enters and remains in different network states (indicated by different positions of grouped spikes), corresponding to different

predicted class in the supervised learning. The tight match between labels and preference neurons suggests that the generated internal model encodes the MNIST

representation efficiently.
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hence responses are unspecific to different inputs in Figure 7A.
However, finally spikes are grouped at the positions from the 6th,
3rd, 1st, 9th, 5th, 1st, 8th, 2nd, 4th, 5th, 8th, 1st, 9th, 2nd, 7th, 5th,
1st, 4th, 2nd, 6th neurons in Figure 7D, which is the same as label
order. Therefore, responses have become preferences for different
inputs. Synaptic sampling with noise obtains the best learning
results of this task, and the corresponding spike responses have
the most obvious preference pattern. In Figure 7E, less spikes
are grouped at the positions which is the same as label order.
Because synaptic sampling without noise learns this task less
accurately. In Figure 7C, preference pattern is not very obvious
since synaptic sampling without noise cannot learn this task
accurately for Synthesis dataset.

Here, we need to discuss one similar work for additional
verification of noise effects. Based on synaptic sampling, Kappel
et al. (2018) presented a framework to maintain the stable
computational power in spite of stochastic spine dynamics.
They proposed that the functional role of noise is the
compensation for network perturbations and hence noise can
help network maintain the stable computational power. They
also conducted the experiments about different temperature
on learning performance, where the strength of stochasticity
can be scaled by the temperature. The results show that good
performance was achieved for a range of temperature values, and
too low (such as without noise) or too high temperature impaired
learning, as shown in the Figures 5D,G of their paper. To some
extent, it is of evidence that synaptic sampling with noise indeed
obtains better performance. However, the difference with our
work is outlined as three points.

First, the type of noise is different. They use the standard
Brownian noise and the strength of stochasticity should be
scaled by the temperature. Therefore, it is an issue to adjust the
strength of noise. In contrast, the strength of our noise can be
adapted automatically based on the synaptic weight. Second, the
perspective from why the noise works is different. They mainly
focus on the realization of stable computational function instead
of noise mechanism, and therefore provide a short analogy using
simulated annealing. However, we analyze the noise theoretically
from the view that noise helps optimization escape from saddle
points. Third, the application is different. Their model is in the
context of reinforcement learning, i.e., levermovement, while our
model is in the context of supervised learning, i.e., classification.

6.3. Verification on the Three-Layer
Networks
In the simulations of three-layer networks, we present 43,200
samples to networks for the Synthesis dataset and 60,000 samples
for the MNIST dataset. Other configurations are the same as
two-layer networks. The number of neurons in the hidden layer
is 500. We repeat the simulation 10 runs and the accuracy is
averaged over 10 runs. As shown in Figure 8, in the learning
and test phase, the accuracy of synaptic sampling is almost 30%
higher than that without noise for the Synthesis dataset and
around 15% for the MNIST dataset. Compared with the two-
layer network in Figure 6, when the number of layers increase,
the performance becomes better, i.e., the accuracy is improved

from 80% in two-layer networks to 88% in three-layer network
for the Synthesis dataset. It is because deeper networks have
the potential for more complex representation. However, the
accuracy of synaptic sampling without noise has not improved
in spite of the increasing number of layers as the number of
saddle points increases exponentially. As shown in Figures 8B,D,
likely, the standard deviation of synaptic sampling with noise is
slightly smaller in spite of additional fluctuations on the three-
layer networks. Therefore, noise improving optimization without
losing precision can also be applied to three-layer spiking neural
networks. In addition, the accuracy in the test phase is similar to
that in the learning phase. It shows that noise prevents spiking
neural networks from overfitting, regardless of the increasing
number of layers. In addition, the speed of convergence in
synaptic sampling slows down in three-layer networks, especially
without noise, compared to Figures 6C, 8C. The increasing
number of layers leads to the increasing number of saddle points
and hence it is more difficult for networks to escape from saddle
points without noise.

In Figure 9, the spike responses are similar to that of the
two-layer networks. For the Synthesis dataset, initial responses
are unspecific to different inputs. After learning, synaptic
sampling with noise learns the best results of this task, and the
corresponding spike responses have the most obvious preference
pattern. Synaptic sampling without noise cannot learn this task
accurately, and the preference pattern is not very obvious in
Figure 8C. For the MNIST dataset, Figures 8D,E show the 400-
ms learning process from the 57,000th example to the 57,020th
example. The corresponding labels are [6, 3, 1, 9, 5, 1, 8, 2, 4, 5, 8,
1, 9, 2, 7, 5, 1, 4, 2, 6]. After learning, more spikes are grouped
at the position as indicated by the label number, compared to
synaptic sampling without noise. Therefore, synaptic sampling
learns the task better and spike responses have more obvious
preference‘pattern.

6.4. Verification for Escaping From the
Saddle Points
We try to clarify that the gain in performance in the experiments
is due to overcoming the saddle point problem. Although it is
difficult to calculate the total number of saddle points and strict-
saddle points, it is easy to calculate the total number of strict-
saddle points which satisfies Equation (6) given the inputs and
network weights. Note that strict-saddle points which satisfies
Equation (6) is the subset of strict-saddle points, and hence it is
plausible to test the existence of escaping from the saddle points
with noise. In Equation (5), given different inputs, the Hessian
property of a single weight may be different. Therefore, the main
configuration of the strict-saddle point depends on the inputs
and network weights. Based on the experiments in section 6.2, we
choose the 30 weights at the convergence stage and 1,000 inputs
for a total 30,000 samples. If Equation (6) is satisfied given one
sample, the corresponding weights belong to a strict-saddle point.
In this way, we count the number of strict-saddle points in the
spiking neural networks with/without noise, denoted as S1 and
S2, respectively. Then, we calculate the reduction rate of strict-
saddle points. To some extent, the reduction rate reflects how
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FIGURE 8 | Performance of the three-layer networks with and without internal noise. (A) Learning curves of synaptic sampling with/without noise on the training set

for Synthesis dataset. Mean values over 10 runs are shown, shaded area indicates STD. (B) Accuracy comparison in the learning and test phase for the Synthesis

dataset (averaged over 10 runs). Error bars indicate STD. (C,D) In the MNIST dataset, the performance with internal noise is better than that without noise throughout

the whole learning course.

effectively noise prevents the learning algorithm from trapping
in the saddle points. The reduction rate is calculated according to
Equation (17).

Reduction Rate =
S2 − S1

S2
(17)

The results are shown in Table 2. It obvious that the strict saddle
points with noise has been reduced greatly for three datasets,
which shows that noise helps optimization escape from many
saddle points. In addition, we sort the datasets according to
the reduction rate in descending order, that is, the Synthesis
dataset >CIFAR-10 >MNIST. According to the accuracy gain
in descending order, the list is, Synthesis dataset >CIFAR-10
>MNIST. Therefore, the above two sort lists show that when
the reduction rate is greater, performance improves, and noise
helps optimization overcome the saddle point problem more
efficiently. Such positive correlation indicates that the gain in
performance is due to overcoming the saddle point problem
as suggested in our manuscript. The number of strict saddle
points in the MNIST dataset is the smallest (i.e., 489) and hence
synaptic sampling without noise can also obtain the satisfactory
performance (∼ 80%). For the CIFAR-10 dataset, although the

reduction rate is not small (68.64%), the number of strict saddle
points is still large in contrast (i.e., 6,157) due to the larger scale
and more complex representation. Therefore, synaptic sampling
with noise only achieves around 54% accuracy.

7. CONCLUSION AND DISCUSSION

In this work, we introduce one biologically plausible noise
structure, which is different from the traditional Gaussian
noise, and investigate the noise mechanism on the brain
computation theoretically. We applied the proposed model
to 10-categories classification problem to demonstrate
the learning ability of noisy spiking neural networks and
compared with networks without noise. Simulation results
show that noisy spiking neural networks have higher learning
accuracy, and spike responses had a more obvious preference
pattern for random spike train inputs. Further, three-layer
noisy spiking neural networks have better learning abilities
compared with two-layer networks. Our contributions are
three fold.

From the perspective of optimization, we propose that one
of the essential roles of noise is to improve optimization in the
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FIGURE 9 | Spiking activity of the 10 output neurons in the three-layer networks with/without internal noise motifs. We present 20 samples during a 4 s epoch for one

of the ten simulations. (A) Firing response of the 10 output neurons before learning. (B,C) Firing response of the output neurons after learning with/without noise for

Synthesis dataset. Sparsification of firing of output neurons occurs obviously after learning with noise. (D,E) Same for MNIST dataset. The corresponding labels of 20

samples are [6, 3, 1, 9, 5, 1, 8, 2, 4, 5, 8, 1, 9, 2, 7, 5, 1, 4, 2, 6].

brain computations and brain plasticity. Noisy spiking networks
for which the synaptic weights affect the noise variance satisfy
strict saddle conditions. In other words, proposed noise brings
more descent directions and Hessian information of networks

by changing the curvature of the landscape in the network
parameter space, especially in the neighborhood near saddle
points. In this case, gradient descent with noise will escape from
bad saddle points leading to efficient optimization.
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TABLE 2 | Reduction results of strict-saddle points and the corresponding gain in accuracy.

Dataset
Number of strict saddle points Reduction

rate (%)
Accuracy (%) Accuracy

gain (%)
With noise (S1) Without noise (S2) With noise Without noise

Synthesis dataset 711 4,157 82.89 ∼ 82 ∼ 60 ∼ 22

MNIST 489 1,167 58.06 ∼ 90 ∼ 80 ∼ 10

CIFAR-10 6,157 19,632 68.64 ∼ 54 ∼ 39 ∼ 15

From the perspective of biology, we give a theoretical
conjecture about the form of noise in the brain. The difference
between our noise and traditional Gaussian noise is a positive
correlation with a dendritic spine size. There are two biological
proofs on such a plausible structure. First, we prove that
the probability distribution of proposed noise satisfies the
minimummean square-error estimation based on the free energy
principle in neuroscience. Second, it has been observed that
larger spines show the most diverse changes in CA1 pyramidal
neurons in vivo experiments, which is consistent with our
noise structure.

From the perspective of the application, our noisy spiking
neural networks can be extended to multi-layer networks based
on the back-propagation algorithm. Deep learning has excellent
abilities in learning complex representations due to its deep
network structure. We hope that multi-layer noisy spiking neural
networks can serve as a first step toward the realization of more
powerful computation.

There are still some related open problems. First, the
proposed noise is associated with the number of samples. It is
worthwhile to study whether it can be automatically adaptive
to some application that is sensitive to the sample size. For
example, it has been tested by many studies in machine learning
that on-line learning is better in large scale problems, while
batch learning is better in small scale problems (Bottou and
Bousquet, 2008; Mairal et al., 2009; Hoffman et al., 2010;
Lin, 2010; Welling and Teh, 2011; Hardt et al., 2015). We
hope the adaptive structure to the sample size in our noise
will take effect on the robustness of sample size in artificial
intelligence. Another important problem is whether there is a
close relationship between proposed noise and similar techniques
of adding noise in machine learning such as drop out, on-line
learning. In future works, we will try to connect artificial and

biological spiking neural networks further by studying the above
two problems.
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